제목 : Co(O)4(N)-type single-atom-based catalysts and ligand-driven modulation of electrocatalytic properties for reducing oxygen molecules
저널 : EcoEnergy
링크 : https://doi.org/10.1002/ece2.27
Single-atom-based catalysts are intriguing electrocatalytic platforms that combine the advantages of molecular catalysts and conductive carbon-based materials. In this work, hybrids (Co-NrGO-1 and Co-NrGO-2) were generated by wet-reactions between organometallic complexes (Co(CH3COO)2 and Co[CH3(CH2)3CH(C2H5)COO]2, respectively) and N-doped reduced graphene oxide (NrGO) at25℃. Various characterizations revealed the formation of atomically dispersed Co(O)4(N) species in Co-NrGO-2. Density functional theory (DFT) calculations explained the effect of the aliphatic C7 group in Co2 on the formation processes. The Co-NrGO-2 hybrid showed excellent catalytic performance, such as onset (0.94V) and half-wave (0.83V) potentials, for electrochemical oxygen reduction reaction (ORR). Co-NrGO-2 outperformed Co-NrGO-1, which was explained by more back donation to the antibonding orbitals of O2 from electron-rich aliphatic groups. DFT calculations support this feature, with mechanistic investigations showing favored ORR reactions and facile breakage of double bonds in O2.